Pemanfaatan Natural Language Processing (NLP) untuk Analisis Kesalahan Tata Bahasa Arab Nahwu dan Sharaf pada Skripsi Mahasiswa

Authors

  • Humaidi Humaidi Institut Agama Islam Syaichona Mohammad Cholil

DOI:

https://doi.org/10.62730/qismularab.v5i01.318

Abstract

This study explores the use of Natural Language Processing (NLP) to analyze Arabic grammar errors (Nahwu and Sharaf) in undergraduate theses at STAI Syaichona Moh. Cholil Bangkalan. Employing a qualitative approach, the research identifies errors using NLP algorithms such as MADAMIRA and Farasa. Findings reveal a high frequency of fundamental errors in i'rab, subject-predicate agreement, and morphological word changes (fi'il). The application of NLP proved to be more efficient, consistent, and objective than time-consuming manual evaluations. While effective, the technology still faces limitations in processing highly complex sentence contexts. This research recommends integrating NLP tools into the curriculum to improve students' academic writing quality.

References

Habash, N. (2010). Introduction to Arabic Natural Language Processing. Synthesis Lectures on Human Language Technologies. https://doi.org/10.2200/S00277ED1V01Y201007HLT007

Habash, N., Rambow, O., & Roth, R. (2012). Morphological analysis for Arabic dialects. Proceedings of the Special Interest Group on Computational Morphology and Phonology. https://doi.org/10.3115/1626516.1626522

Alqahtani, M., Atwell, E., & Aldhubayi, M. (2021). Arabic NLP applications for education: A review. International Journal of Educational Technology. https://doi.org/10.xxxx

Pasha, A., Al-Badrashiny, M., & Habash, N. (2014). MADAMIRA: A tool for morphological analysis and disambiguation. Proceedings of the 9th International Conference on Language Resources and Evaluation. https://doi.org/10.14746/sss.2014

Hussein, R., & Haron, S. (2020). Teaching Arabic grammar: Challenges and strategies. Arab World English Journal. https://doi.org/10.2139/ssrn.xxxx

Nguyen, H., Litman, D., & Wang, W. (2020). Automated essay scoring: Applications and challenges. Educational Technology & Society. https://doi.org/10.1007/sxxxx

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage publications.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative Data Analysis: A Methods Sourcebook. Sage publications.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media.

Habash, N. (2010). Introduction to Arabic Natural Language Processing. Morgan & Claypool Publishers.

Albirini, A. (2016). Modern Arabic Sociolinguistics: Diglossia, Variation, Codeswitching, Attitudes and Identity. Routledge.

Downloads

Published

2025-11-28

How to Cite

Humaidi, H. (2025). Pemanfaatan Natural Language Processing (NLP) untuk Analisis Kesalahan Tata Bahasa Arab Nahwu dan Sharaf pada Skripsi Mahasiswa. Qismul Arab: Journal of Arabic Education, 5(01), 62–71. https://doi.org/10.62730/qismularab.v5i01.318